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Abstract—Sequential matching using hand-crafted heuristics
has been standard practice in route-based place recognition for
enhancing pairwise similarity results for nearly a decade. How-
ever, precision-recall performance of these algorithms dramati-
cally degrades when searching on short temporal window (TW)
lengths, while demanding high compute and storage costs on
large robotic datasets for autonomous navigation research. Here,
influenced by biological systems that robustly navigate spacetime
scales even without vision, we develop a joint visual and positional
representation learning technique, via a sequential process, and
design a learning-based CNN+LSTM architecture, trainable via
backpropagation through time, for viewpoint- and appearance-
invariant place recognition. Our approach, Sequential Place
Learning (SPL), is based on a CNN function that visually encodes
an environment from a single traversal, thus reducing storage
capacity, while an LSTM temporally fuses each visual embedding
with corresponding positional data—obtained from any source
of motion estimation—for direct sequential inference. Contrary
to classical two-stage pipelines, e.g., match-then-temporally-filter,
our network directly eliminates false-positive rates while jointly
learning sequence matching from a single monocular image
sequence, even using short TWs. Hence, we demonstrate that our
model outperforms 15 classical methods while setting new state-
of-the-art performance standards on 4 challenging benchmark
datasets, where one of them can be considered solved with recall
rates of 100% at 100% precision, correctly matching all places
under extreme sunlight-darkness changes. In addition, we show
that SPL can be up to 70× faster to deploy than classical
methods on a 729 km route comprising 35,768 consecutive
frames. Extensive experiments demonstrate the potential of this
framework through quantitative and qualitative results. Baseline
code available at https://github.com/mchancan/deepseqslam

I. INTRODUCTION

The vast majority of sequential filtering algorithms in place
recognition research for autonomous robot navigation are vari-
ants of carefully designed, complex hand-crafted heuristics.
The use of these algorithms on top of pre-computed global
image descriptors based on convolutional neural networks
(CNN) [16] has enabled researchers to improve significantly
accuracies on challenging driving datasets under viewpoint
and appearance changes, e.g., different weather, season or
illumination [33]. The success of these multi-frame filtering
methods primarily rely on leveraging temporal information—
explicitly found in image sequences recorded from large
outdoor real environments—for reducing high false-positive
rates typically found in sequence-based place recognition tasks
due to perceptual aliasing and environmental cycles [26].

However, heuristic-based sequential matching has three sig-
nificant practical disadvantages. First, its computational cost
scales with the dataset size, which incurs expensive memory
overhead, and increases the time required to deploy on big
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Fig. 1. Average Precision vs. Testing Latency. For testing, we sampled 3K+
frames of the 729 km Nordland dataset for better visualization of deployment
latencies. All our models achieve comparable results to the best SeqSLAM
settings, even using short TW, while being ∼ 10× faster to deploy. Our
approach can be ∼ 60× faster than classical methods on the full 35K+ frames.
Note: Speed-up values are based on average latencies of our model running
on CPU, as classical methods can be deployed on CPU only.

datasets or autonomous driving applications. Second, its accu-
racy rapidly degrades when reducing key searching parameter
values such as temporal window (TW) lengths. Third, it
typically requires both reference and query traversals during
deployment, which increases storage cost with dataset size,
to compute a pairwise similarity matrix that is then directly
enhanced based on best-match searching heuristics or strong
assumptions on velocity information for instance. Moreover,
the development of entirely new multi-frame filtering methods,
through the use of recurrent neural networks (RNNs) [11],
suitable for learning structure in time, has been surprisingly
limited; only recently the use of hand-crafted, non-trainable
continuous attractor recurrent networks has been proposed [7].

In this paper, we argue that these limitations and nega-
tive consequences can be fundamentally addressed in a deep
learning framework by exploiting the underinvestigated use
of RNNs for sequence inference, rather than heuristic-based
techniques. Hence, we build on using long short-term memory
(LSTM) [19] networks for learning sequence filtering tasks,
addressing all the main limitations of classical methods. Our
main contributions are summarized as follows:

• We design a trainable CNN+LSTM architecture, which
fuses visual and positional data, recorded from a single
traversal of an environment, via a sequential process.
Our approach, Sequential Place Learning (SPL), learns
multi-frame sequential matching tasks end-to-end via
backpropagation through time (BPTT) [45].

• We propose a sequence processing strategy that allows us
to train our model to achieve substantially higher average-
precision results using short TW lenghts, contrary to what
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was known to-date based on classical sequential filtering
methods for place recognition in robotics research [29].

• We present the first demonstration of high-performance
learning-based sequence filtering on a range of deploy-
ment latencies (see Fig. 1), which allows us to set new
state-of-the-art results on 4 benchmark robotic datasets,
while outperforming 15 classical methods.

Sequential place learning (SPL) simultaneously train two
key learning-based systems: (i) a convolutional neural network
(CNN) for encoding raw RGB images, and (ii) a recurrent
network (LSTM) for sequential learning and inference by tem-
porally fusing visual encodings with positional data; obtained
from any source of motion estimation including but not limited
to wheel/visual/radar odometry, LiDAR, GPS, structure from
motion (SfM) or even synthetic time-series data.

We conduct extensive experiments to demonstrate the signif-
icance of SPL on four (4) datasets (Oxford RobotCar, Nord-
land Railway, St. Lucia, and Gardens Point) each recorded
multiple times along 10-km, 729-km, 1-km and ∼10-km
routes, respectively, with diverse conditions. On the Gardens
Point dataset, in particular, we compare our model against
ten (10) well-known classical methods under drastic day-night
changes and show that our approach attains 100% recall rates
at 100% precision for the first time.

The paper is structured as follows. We discuss the problem
of multi-frame place recognition tasks while briefly surveying
research papers on classical sequential filtering techniques in
Section II. We introduce the concepts of simultaneous visual-
and-positional learning and multi-frame place learning for
route-based place recognition tasks, and describe how we
developed our new state-of-the-art architectures in Section
III. Finally, we present our experimental setup and results in
Sections IV and V, respectively, before conclusion in Section
VI; which is followed by the Appendix with additional results.

II. UNDERSTANDING SEQUENCE FILTERING

Here we first describe how pairwise (reference-query) image
similarities work well for single-frame, image-retrieval-like
tasks, but produce poor results when dealing with image se-
quences. Highlighting the need for versatile sequence filtering
methods for route-based place recognition. We then briefly
review prior work on sequence matching and describe the key
components that might allow us to understand key strategies
within classical methods in order to replicate these benefits
when training neural networks for sequence modeling tasks.

A. Image Similarity

Visual place recognition research currently relies on image
representations for global image description typically obtained
from off-the-shelf CNN functions, rather than classical hand-
crafted features such as SIFT [24] or SURF [3], pre-trained
for classification [38] or image retrieval tasks [1].

B. Sequence Matching

The majority of multi-frame place recognition methods
are then built based on pre-computed pairwise difference

similarity matrices, between reference and query image repre-
sentations, for iteratively applying temporal filtering/searching
heuristics that seek to reduce false-positive rates such as ABLE
[2], ISM [42], OPR [40], VPR [41], HMM [17], MCN [33]
and many others [12, 13, 33, 25, 8, 44]. The key ideas behind
this, now standard, methodology date from key appearance-
only topological place recognition systems such as FAB-MAP
[10, 9] and SeqSLAM [30, 29].

Subsequent work that integrated odometry information was
shown to improve place recognition performance such as
CAT-SLAM [27] or SMART [35] on a variety of benchmark
datasets [36]. The main benefits of the sequence filtering layers
of these systems is that it allows robust generalization across
challenging appearance and viewpoint variations including
multiple seasons, weather, and lighting conditions [6]. All
these models, however, share a common limitation which is
that they do not incorporate modern learning-based systems,
e.g, recurrent neural networks (RNN), for sequence inference.

III. TOWARDS SEQUENTIAL PLACE LEARNING

Only recently, researchers have shown the use of dynamical
attractors neural circuits [31] (a.k.a. continuous attractor neural
networks (CANN)), a neuroscience-oriented type of RNN, to
perform sequential place recognition without resorting to clas-
sical methods for sequence matching [7]. This work demon-
strate the potential of RNNs for temporal processing tasks in
robotics research as in recent hybrid approaches [47, 43]. Al-
though the model proposed in [7] achieves competitive results
on challenging place recognition datasets, the CANN compo-
nent does not incorporate learning capabilities, instead relying
on pre-assigned unit interconnections and weights that need to
be carefully fine-tuned to deploy on a particular dataset. Also,
it does not incorporate self position-aware learning properties,
rather it implements a direct mechanistic shift-and-copy action
to simulate movement through the environment.

A. Joint Visual-and-Positional Place Learning

In contrast with classical two-stage multi-frame pipelines,
e.g., match-then-temporally-filter, here we propose to jointly
learn visual-and-positional representations that can be simul-
taneously used for sequential inference for place recognition
for the first time. We design and implement an entire neural
network which can be trained end-to-end via BPTT [45]. In
the next section, we describe how the visual and positional
processing components of our architecture are integrated.

B. Neural Network Architecture

The overall CNN+LSTM architecture for global image
description and sequential place learning is shown in Fig.
2(b) comprising a single CNN vision module and 2 recurrent
LSTM cells, along with a baseline network (a) with an LSTM.

Global place description: Given an image sequence It of an
environment, we apply a CNN function on each input image
to obtain compact n-dimensional global image descriptors dt ,
where n ∈ N+ is a function of the CNN model. These rep-
resentations can be learned through conventional training via



Fig. 2. (a) Baseline network. (b) Proposed CNN+LSTM architecture for
positional pt and visual dt sequential place learning (SPL).

backpropagation. After training, the CNN will have visually
encoded the entire environment within its network weights.

Sequence place learning (SPL): Depending on the type
of CNN chosen, and its particular training requirements, the
overall CNN+LSTM training stage can be alleviated by using
a pre-trained CNN function such as NetVLAD [1], heavily
used in visual place recognition research for extracting robust
global image descriptors. Thus, the CCN module can be frozen
while the LSTM cell are trained via BPTT [45]. In Fig. 2(b),
the environment-specific (env) LSTM cell receives the CNN
visual features, temporally concatenated with corresponding
positional encodings. This allows our model to capture locale-
specific visual and topology features that can then be used to
feed a LSTM cell for SPL. The (SPL) LSTM cell receives a
direct (skip) connection from the CNN module output, con-
catenated with the hidden states of the environment-specific
LSTM output. Finally, a single linear layer (or multi-layer
perceptron (MLP)) receives the hidden states from the (SPL)
LSTM cell for semi-supervised training (see Fig. 2).

Implementation details: We experimented with several
(pre-trained and trained from scratch) CNN vision models.
Not surprisingly, we found that NetVLAD [1], a VGG-16
[37] based architecture, provided better results on average
than other vanilla models including AlexNet [23], VGG-16,
ResNet-18 [18], SqueezeNet [21], DenseNet-161 [20]. Thus,
we used the best model (NetVLAD+whitening, trained on
Pittsburgh 30k [39]), with feature dimension of n= 4096, from
the official MATLAB implementation1 for all state-of-the-art
comparisons in Section V. The NetVLAD image descriptors
dt were obtained using 224×224 RGB image observations,
and the 2D positional information pt was encoded using a 2-
d vector. Depending on the type of motion data provided by
each dataset, we could use any source of motion estimation
including GPS, odometry or SfM. For all experiments, we
standardize pt (µ = 0, σ = 1) prior to feeding the network.
For the recurrent networks, two vanilla single-cell LSTMs,
with 512 units each, were trained end-to-end. The number of
units N of the linear output layer was set to be equal to the
total number of frames of the dataset minus TW length.

Learning hyperparameters: The cost function of the se-

1https://github.com/relja/netvlad

quential inference task was sent to the Adam learning gradient
algorithm [22] with plateau scheduler for reducing the learning
rate (lr), with weight_decay= 0, initial_lr= 0.001,
and min_lr = 10−6. The weight assigned to the positional
encodings was 500, found through cross-validation. The num-
ber of training epochs used vary depending on the dataset
size. In this paper, we trained our models using 200 up to
3,000 epochs per environment, comprising between 200 and
35K+ consecutive frames, respectively, with batch sizes equal
to the number of frames for stable training. After training, our
models were capable of temporally integrating both vision and
positional data, even using short TW lengths.

C. Sequence Processing and Temporal Window (TW)

The LSTM cell in Fig. 2 learn a function to perform
sequence inference based on image and positional sequential
data. To enable convergence during training, we transform
these sequences of observations and states into multiple exam-
ples using a sequential processing strategy over a TW length.
Given a sequence with N time steps It = [I1, I2, ..., It , ..., IN ]
(representing a sequence of raw images or positional encod-
ings) we split this into multiple samples (sub-sequences) of
TW consecutive time steps, resulting in the following N-
TW samples: S1 = [I1, I2, ..., ITW ], S2 = [I2, I3, ..., ITW+1], ...
SN−TW = [IN−TW , IN−TW+1, ..., IN−1]. We feed our model with
a batch_size number of these temporally synchronized,
consecutive (image and positional) samples, and highlight that
our implementation is robust to training and deployment with
shuffled samples, and also to velocity inconsistency between
training and query traversals. We provide experiments on
asynchronous datasets to demonstrate this capability.

IV. EXPERIMENTAL SETUP

A. Sequence-based Datasets

Nordlandsbanen: The minute by minute, season by season
Nordland Railway dataset2 was recorded over a 729 km
train journey in Norway, providing four huge ∼10-hour video
streams, one for every season, at 25 FPS and 1920×1080
resolution. Each video file is synchronized in order to make
the train appear to be at the same place at the same time.
It also provides synchronized GPS data for each traversal. On
this dataset, we conducted two main experiments by extracting
individual frames out of videos at 1 FPS and 0.1 FPS, resulting
in 35768 and 3577 frames, respectively. We trained our model
on summer conditions and tested on the remaining (fall,
winter, spring), and corresponding GPS data was encoded to
represent positional information as discussed in Section III-B.

Oxford RobotCar: This dataset [28] was collected on
a car platform traversing over 100+ times over a 10 km
route in Oxford, UK, over a 1-year period, capturing diverse
weather, season, and dynamic urban conditions. We selected
1000 temporally synchronized frames out of three traversals3,
referred here as overcast for training, and sunlight and night

2https://nrkbeta.no/2013/01/15/
32014-12-09-13-21-02, 2015-05-19-14-06-38, 2014-12-10-18-10-50 in [28]
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Fig. 3. Influence of temporal window (TW) on multi-frame methods and generalization from summer to fall, winter and spring conditions of Nordland.
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Fig. 4. Precision-recall curves and AUC metrics on the Nordland dataset using a localization radius of 10 frames and TW of 10.

for testing, with corresponding GPS data. On this particular
dataset, we used 1280×960 RGB images from the center
side of the Bumblebee XB3 trinocular camera but without
applying undistortion, thus, slightly increasing the difficulty
for recognizing places.

Gardens Point: The day and night with lateral pose change
(right, left) Gardens Point Walking dataset [14] consists of
three synchronized traversals with 200 images at 960×540
resolution each. We conduct several experiments for viewpoint
and appearance changes on this dataset by training and testing
on different traversal combinations as detailed in Section V.
This dataset does not provide motion information but we use
synthetic time-series data provided in [6].

St Lucia: The St Lucia Multiple Times of Day dataset [15]
was collected with a forward facing webcam, attached to the
roof of a car, through the suburb of St Lucia, Queensland,
Australia. The route was traversed ten times during multiple
days to capture the difference in appearance between early
morning and late afternoon. GPS data is included for each
trip and synchronized with 640×480 RBG images at 15 FPS.
On this dataset, we demonstrate that our approach is robust
to strong velocity inconsistencies of the car between training
and query traversals. We use the first 4,000 frames of each
traversal, covering the full ∼10-km perimeter of the suburb.

B. Precision-Recall, Average-Precision and Tolerances

Precision-Recall and Average-Precision: On deployment,
likelihood scores for each query image w.r.t. the reference
traversal are produced by the linear output layer of our
model. These values were then used to compute correspond-
ing precision-recall (PR) curves, which can then be used to

calculate other types of metrics such as area under the curve
(AUC). We report both PR curves and AUC metrics for all
experiments and datasets.

Coarse Localization Radius Tolerance: Except for St
Lucia, we report results on a range of ground-truth error
tolerance from 1 up to 50 frames away from the correct
match for performance analysis in Section V. On St Lucia,
we consider a localization radius tolerance of 20 meters.

V. RESULTS

Here we demonstrate that our approach is capable of
learning sequence inference from a single traversal of a
route, while accurately generalizing to multiple traversals of
that route under very different visual conditions. Also, on
the most challenging asynchronous dataset, St Lucia, with
velocity inconsistencies, our approach gets 96.65% AUC while
SeqSLAM and Delta Descriptors struggle with 27.39% AUC
and 57.47% AUC, respectively.

A. Influence of Temporal Window (TW)

In Fig. 3 we demonstrate how classical methods such as
SeqSLAM [30] and Delta Descriptors [13] struggle to produce
accurate results when using short TW lengths, especially under
strong visual changes as discussed throughout the paper, while
learning-based methods achieve competent AUC results above
60%. We used a localization radius tolerance of 10 frames for
producing this figure at every single value of TW, which is
lower than in previous research [6]. For SeqSLAM, we use
the official MATLAB implementation4 with default parameters

4https://github.com/OpenSLAM-org/openslam openseqslam

https://github.com/OpenSLAM-org/openslam_openseqslam
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Fig. 5. AUC metrics vs. localization radius tolerance on the Nordland dataset with TW of 10.

TABLE I
SPACE AND TIME SYNCHRONIZED DATASETS: AUC (%) RESULTS FOR LOCALIZATION RADIUS OF 2/10/50 AND TW OF 10

Method Gardens Point Nordlandsbanen Oxford RobotCar
Day (L)-Night (R) Day (R)-Day (L) Summer-Fall Summer-Winter Overcast-Sunlight Overcast-Night

SeqSLAM [30] 5.2 / 12.8 / 46.2 43.2 / 56.5 / 65.8 88.0 / 89.0 / 89.2 77.0 / 77.7 / 78.3 9.4 / 16.9 / 18.6 1.3 / 3.9 / 12.0
Delta D. (DD) [13] 79.8 / 93.8 / 96.6 96.1 / 99.5 / 99.5 90.2 / 93.2 / 94.3 30.0 / 34.6 / 37.8 4.9 / 16.1 / 27.2 87.1 / 87.1 / 87.1
Baseline (BL) [6] 100 / 100 / 100 100 / 100 / 100 89.1 / 97.8 / 99.6 31.6 / 70.9 / 91.7 78.4 / 96.7 / 100 69.6 / 93.1 / 99.3

SPL 100 / 100 / 100 100 / 100 / 100 82.3 / 97.8 / 99.8 37.8 / 82.4 / 97.8 66.9 / 97.9 / 100 53.2 / 96.0 / 99.9

TABLE II
ASYNCHRONOUS DATASETS: AUC (%) RESULTS FOR LOCALIZATION RADIUS OF 20 METERS AND TW OF 10

Method St Lucia
100909 1000 100909 1210 100909 1410 110909 1545 180809 1545 190809 1410 210809 1000 210809 1210

SeqSLAM [30] 61.64 50.04 48.74 27.39 44.12 61.32 44.51 38.19
DD [13] 97.89 92.71 78.03 57.47 74.58 67.28 98.98 92.79

SPL 99.94 99.68 99.54 96.65 98.99 99.61 99.78 97.07

(only changing TW or ds as needed); SeqSLAM only works
using an even number for ds though. For Delta Descriptors,
we use the Python code provided by the authors in [13]
with default parameters also varying TW only as needed.
We highlight that the baseline [6], is getting competitive
performance with its generalized method but under summer-
winter changes its performance remains constant at 70% AUC,
even using larger TWs, while our approach and SeqSLAM
achieve over 80% AUC. However, when using a TW of 2
frames (Fig. 3-Middle), SeqSLAM and Delta Descriptors get
2% and 27% AUC, respectively, while ours gets near 70%.

B. Comparisons on Space and Time Synchronized Datasets

In Fig. 4 we report the PR curves for a TW of 10 obtained
from the results on Fig. 3, with corresponding AUC metrics,
considering a localization radius tolerance of 10 frames. On
the most challenging summer-winter conditions changes, we
note that SeqSLAM performs competitively at this TW with
78% AUC on winter (Fig. 4-middle), but our model outper-
forms it with 82% AUC overall. At the same conditions,
Delta Descriptors is shown to perform poorly due to both
image resolution and huge sampling rates sensitivity on this
particular dataset settings. We will show, however, that its
performance gets better on the other dataset configurations
for fair comparisons, but we wanted to highlight this particular
limitation among classical methods. Nevertheless, on the other

less challenging conditions changes (fall, spring), we show all
these models achieve competent results approaches 75%.

More generally, in Fig. 5, we show how the AUC spectrum
changes against localization radius tolerances between 1 to 50
frames, while all models are using a standard value of TW=10;
typically used on place recognition research. We also highlight
that TW of 10 effectively captures the overall maximum AUC
results of each method, as shown in Fig. 3. In Table I we
summarize the main AUC results corresponding to our three
datasets for a TW of 10 and localization radius of 2/10/50
frames. Our model consistently attains higher AUC values than
classical methods at challenging visual transitions such as day-
night and summer-winter. In the Appendix we report all the
PR curves from where the AUC metrics presented in Table I
were obtained, along with the training curves of our approach.

C. Comparisons on Asynchronous Datasets

In Table II, we report the results on the St Lucia dataset,
recorded under variable velocities of the vehicle as discussed
in Sections IV and III-C. We show AUC values for late
morning and all afternoon times (totaling 8 query traversals),
given that our reference traversal was recorded early morning
around 08:45 a.m. (190809 0845). In the Appendix, however,
we show the full PR curves and qualitative results on the full
10 subsets for each method. Our approach again significantly
outperforms other methods on all the subsets.



TABLE III
SAME FRONT-END FOR ALL METHODS: AUC RESULTS USING NETVLAD ON THE GARDENS POINT DATASET

Traversal Methods with NetVLAD Front-End
Ref Query Pairwise ABLE [2] ISM [42] OPR [40] VPR [41] HMM [17] SeqSLAM MCN [33] DD BL SPL
D-L N-R 0.41 0.79 0.61 0.48 0.29 0.02 0.15 0.43 0.93 0.99 1
D-R D-L 0.98 1 0.69 0.69 0.69 0.33 0.68 0.99 0.99 0.99 1
D-R N-R 0.52 0.8 0.64 0.64 0.47 0.20 0.30 0.54 0.98 0.99 1

TABLE IV
INFLUENCE OF VIEWPOINT AND APPEARANCE CHANGES: MAXIMUM RECALL (%) AT 100% PRECISION

Changes Viewpoint Appearance Viewpoint & Appearance
Dataset Gardens Point CSU-1 Gardens Point Nordland Gardens Point CSU-2

Reference-Query Day (L)-Day (R) Day (L)-Day (R) Day (R)-Night (R) Summer-Winter Day (L)-Night (R) Day (L)-Day (R)
FAB-MAP [10] 2.0 14.3 - - - -

VLAD-based [25] 19.5 59.0 2.5 2.0 - 11.0
SeqSLAM [30] 1.0 25.9 3.0 4.6 - 16.0
SMART [35] 13.0 12.5 5.0 4.4 - 1.0
CNN+Seq [8] 45.0 67.9 48.0 9.0 14.0 41.0

RISF [44] 46.0 91.0 63.0 22.9 67.5 90.0
Baseline [6] 99.0 100 99.0 1.2 99.0 100

SPL 100 100 100 2.5 100 100

D. Comparison to Ten Methods using the Same Front-End

All the results reported in Section V-B were obtained using
their original fron-end methods for global image description.
SeqSLAM used classical sum of absolute differences (SAD),
and the others (Delta Descriptors, Baseline, and our approach)
by default use the best NetVLAD model as we described in
Section III-B. In Table III, we report additional supporting
comparisons against single-frame vanilla NetVLAD (pairwise)
and other 6 multi-frame filtering methods (ABLE [2], ISM
[42], OPR [40], VPR [41], HMM [17], SeqSLAM [30], MCN
[33]) that received the pairwise similarity matrix, obtained
from NetVLAD [1], for sequence filtering according to [33].
In addition to SeqSLAM, Delta Descriptors (DD) and Baseline
(BL), in Table III we present the full comparison all these ten
methods on the Gardens Point dataset. AUC results are cal-
culated with the same localization tolerance used in [33]. Our
model outperforms all the others with 100% recall at 100%
precision on all the required reference-query combinations of
subsets: day-left (D-L), day-right (D-R) and night-right (N-R).

E. Robustness to Viewpoint and Appearance Changes

In Table IV, we reproduce the benchmark presented in
[44] where the authors compare their model under changes
in viewpoint, appearance and both types of changes at the
same time on three datasets. This allows us to compare
our approach against five other methods such as FAB-MAP
[10], VLAD-based [25], SMART [35], CNN+Seq [8], Robust
Image-sequence-based framework (RISF) [44], in addition to
SeqSLAM and the baseline network. Our best model once
again achieves precision rates of 100% at 100% recall on all
but one condition. Where the method in [44] performs the best
with 22.9% recall, while ours gets 2.5% recall. It is worth
noting, however, that our model can achieve up to 82% AUC
on this particular condition, which on average is comparable to
∼ 88% AUC of the method proposed in [44] according to their

TABLE V
CPU ONLY: DEPLOYMENT TIME ON THE NORDLAND DATASET

Method 35,768 frames 3,577 frames
SeqSLAM (CPU) 70m 57s

Delta Descriptors (CPU) 51m 33s
SPL (CPU) 1m 5.7s

PR curves. Overall at this point we have already compared
SPL against 15 place recognition systems on 5 datasets.

F. High-Performance Analysis

In Table V we compare the runtime on deployment using
the same CPU (Intel Core i7-8700K CPU @3.70GHz) for all
these models on our two (large and medium) Nordland dataset
settings, comprising 35,768 and 3,577 frames, respectively.
For a medium dataset size, our CPU-based model is up to
10× faster than classical methods, while for the large dataset
configuration it can be up to 70× faster. It is worth noting
that these speed-ups are based on the average latency of our
model running on CPU only (not on GPU). Our model SPL
running on a GPU (GeForce GTX 1080Ti), shown in red
in Fig. 1, is even faster but we do not compare the latency
of classical methods against our GPU deployment. In Fig. 1,
we show the performance comparison between AUC metrics
and deployment latency for our medium dataset configuration,
where we vary TW from 1 up to 18. All our models achieve
comparable results to the best SeqSLAM settings (with TW of
18), even with TW values around 5. Although we used CPU
for comparison purposes, we highlight that the PyTorch [34]
implementation can run on CPU or GPU, contrary to classical
methods that typically run on CPU.

G. Qualitative Results

In Figs. 6, 7 and 8, we show visualizations of the raw
sequence-based image matchings on the Gardens Point, Nord-



Fig. 6. Deployment on Gardens Point with TW and tolerance of 10.

land and Oxford RobotCar datasets, respectively, along the
entire traversal we used for each experiment. From left to
right, in each figure, every column shows the top-1 match for a
particular reference image (left), obtained using our approach
(SPL), SeqSLAM and Delta Descriptors (right). The reference
sequence was obtained by sampling 10 equally-spaced images
out of the entire traversal, each traversal starting on the top
and ending on the bottom of the figure. In the Appendix, we
show similar qualitative results on the St Lucia dataset, but
for the full 10 traversals and considering 20 equally-spaced
images sampled from the entire reference traversal.

VI. DISCUSSION AND CONCLUSIONS

We designed and implemented an LSTM-based architec-
ture for joint visual-and-positional encoding and sequential
place learning (SPL), rather than using conventional two-stage
match-then-filter techniques. SPL was shown to be robust
to extreme environmental changes and velocity inconsistency
between training and query traversals, found across four
large, challenging benchmark driving datasets. Our approach
addressed all the main limitations of classical heuristic-based
methods including high sensitivity to short temporal windows
(TW) values, expensive compute and storage requirements and

Fig. 7. Deployment on Nordlandsbanen with TW and tolerance of 10.

very limited work on learning-based systems for sequence in-
ference using recurrent networks. It provides a strong baseline
for future work in learning-based sequence filtering in the
context of simultaneous localization and mapping (SLAM) and
autonomous navigation research.

We proposed a generalized CNN+LSTM model that in-
corporates an environment-specific LSTM cell for potentially
enabling learning across different environments. This appar-
ently simple yet more general architectural change, compared
to a baseline that uses a single-cell LSTM, was found to be
even more accurate and robust, while also potentially enabling
further extension of our approach onto a multi-environment
architecture for training and deployment on different envi-
ronments using a single model; as in related reinforcement-
learning-based research for navigation [32].

Instead of relying on pre-trained CNN models, we set out
to use a small two-layer CNN for exploring the end-to-end
training behavior (from scratch) of our model but the results
showed that the CNN component does not generalize well to
drastic visual changes, which was expected since these models
require a significant amount of data for effective training and
generalization. We see this observation as future work to fur-
ther investigate additional advantages of jointly learning visual



Fig. 8. Deployment on Oxford RobotCar with TW and tolerance of 10.

and positional information. Finally, it is worth noting that
our method has the potential for supporting the development
of a full learning-based SLAM system by incorporating a
geometric mapping neural network such as those in [5, 4, 46].
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Fig. 9. Top-1 accuracy and loss cost vs. training epochs.
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Fig. 10. PR curves using a tolerance of 20 meters at a sequence length of 10 on St Lucia. Reference traversal: 190809 0845.
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Fig. 11. PR curves using a tolerance of 10 at a sequence length of 10 on Gardens Point.

0 10 20 30 40 50
Localization radius tolerance (#frames)

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Day Left vs. Night Right

SPL
Baseline
Delta Descriptors
SeqSLAM

0 10 20 30 40 50
Localization radius tolerance (#frames)

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Day Right vs. Day Left

SPL
Baseline
Delta Descriptors
SeqSLAM

0 10 20 30 40 50
Localization radius tolerance (#frames)

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Day Right vs. Night Right

SPL
Baseline
Delta Descriptors
SeqSLAM

Fig. 12. AUC vs. localization tolerance at a sequence length of 10 on Gardens Points.
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Fig. 13. PR curves using a tolerance of 10 at a sequence length of 10 on Oxford RobotCar.
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Fig. 14. AUC vs. localization tolerance at a sequence length of 10 on Oxford RobotCar.



Fig. 15. SPL deployment on St. Lucia. Reference traversal: 190809 0845.



Fig. 16. Delta Descriptors deployment on St Lucia. Reference traversal: 190809 0845.



Fig. 17. SeqSLAM deployment on St Lucia. Reference traversal: 190809 0845.
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